pp 4, 6, 8 recopied at the end of this document

A Case Study of a Hardware-Managed TLB in a Multi-Tasking
Environment

C.C. Lee, R.A. Uhlig, and T.N. Mudge

CSE-TR-341-97

June 1997

Computer Science and Engineering Division
Room 3402 EECS Building

THE UNIVERSITY OF MICHIGAN

Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122
USA

trev
Typewritten Text
pp 4, 6, 8 recopied at the end of this document

A Case Study of a Hardware-Managed TLB
in a Multi-Tasking Environment

Chih-Chieh Lee, Richard A. Uhlig, and Trevor N. Mudge

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan
{leecc, uhlig, thm}@eecs.umich.edu

Abstract

There have been very few performance studies of hardware-managed translation look-aside buffers
(TLBs).The major reason is the lack of efficient and accurate analysis tools. Newer operating systems,
applications, and the popularity of the client-server model of computation place a greater burden than their
predecessors on memory system components such as TLBs. Thus it is becoming more important to measure
the performance of memory systems under such workloads. In this work, we implemented a trap-driven
simulator in an operating system to emulate a variety of TLBs. Using this tool, we were able to evaluate the
performance of a range of TLBs under these newer workloads. The results show that in order to improve the
TLB performance, we should carefully map pages into the TLB, append process identifiers to avoid flushing
the TLB contents frequently, or reserve part of the TLB for a particular server process.

1 Introduction

It is widely recognized that the selection of an optimal hardware system design. primarily the design of
the Central Process Unit (CPU) and the caches, is highly dependent on the software characteristics that the
hardware system is to support. For example. main frame systems are designed to support database
applications, while vector machines, or super computers, are designed for massive or intensive computing
workloads such as matrix computation. Each hardware system should be designed to support the primary
software running on and the hardware/software interface is perhaps one of the most crucial performance
factors a hardware designer should confront.

Typical laboratory evaluations of the hardware/software interface have understandably leaned toward
being efficient both in time and money, but may no longer be adequate. Hardware designers usually take a
single and short program as a test on the system they are developing and use the results of these simple
experiments to guide their design of future systems. As a consequence, their machines may perform well
only under some artificial circumstances yet perform questionably under a real environment. This is
especially true for the computer systems designed for general purposes, such as personal computers and
workstations. Meanwhile, these general purpose systems actually have dominated the computer market
because they are more widely used than are supercomputers in the distributed network environments, that
are typical of business, academic, and research environments. Therefore, the performance of the
hardware/software interface in today’s widely used computers, personal computers and workstations,
strongly demands sufficient, and—if possible—efficient examination.

The largest disparity between the simple but artificial working environment and the complicated but real
one is that the latter involves multi-tasking. A multi-tasking environment is a computing environment that
allows more than one proccssi to simultaneously share a computer’s rare resources, such as the CPU and
caches. To allow processes to share the resources, some fair strategies must exist to arbitrate and switch the
active' process among the competitors. This function of switching processes can introduce unexpected
effects that may not be discovered in the traditionally experimental environment. Meanwhile, multi-tasking
is becoming increasingly popular, since the current trends in software design, such as object-oriented
programs, microkernel operating systems, and client-server models, can generate process switching more
frequently. Numerous preliminary studies have indicated that hardware performance can be degraded greatly
in the presence of multi-tasking [Nagle93, Chen94, Nagle94). It is thus becoming important to reconsider
the hardware of modern computers in light of these trends.

Hardware designers may already realize the importance of testing machines by putting them under a more
realistic environment. However, the difficulty and expensive cost of the experimental methodology restrains
designers from doing it. To overcome this problem, an efficient method of evaluating the system
performance under a multi-tasking environment has been proposed by Uhlig, et al., which is termed “trap-
driven simulation” [Uhlig94a, Uhlig94b). In this study, we extended this new method to a different but even
more popular hardware architecture and collected some interesting results.

In order to emphasize the multi-tasking environment, we incorporated the operating system (OS) because
the OS is primarily responsible for managing processes. We instrumented the OS and allowed more than one
process to run in the system at one time. While these processes were running, we collected some statistics
and also did simulations for hardware components of interest. With this experiment, we can examine various
hardware design options and suggest a better one for computer designers.

i. When a program is running, we call it a “process”.
ii. “active” refers to the process that is using the CPU at the moment.

1/27

|
%

i i prasticubine, we studied a hardware component that is most likely to be affected by the multi-tasking
e usnment the translation look-aside buffer (TLB). The purpose of the TLB is to speed up the virtual-to-
k physacal address translation for the virtual memory system by storing the most recently used translation
itormation for a process. Because accessing information from this TLB usually takes one clock cycle, if
this buffer can capture the majority of the translation information most of the time. the performance of the
system will be greatly enhanced. However. since, as indicated above, the hardware designers configure their
TLBs according to single-process experiment, the TLBs may not be able to function well as expected in a
multi-tasking environment.

The architecture we are working on in this study is the Intel i486 microprocessor. which has an on-chip
32-entry TLB, organized in 4-way set associative [Intel92). The i486 MICTOProCcessor is unique because its
TLB is managed by hardware instead of software, as is the case with previous study [Uhlig 94a]. In addition,
the Intel 1486 based machine has shared a significant portion of personal computer market. where there are a
large amount of software available, including multi-tasking programs, such as Linux and Window 95.

Therefore, this work explores the performance of the i486's TLB in supporting the address translation
under a multi-tasking environment we built. To measure performance, we implemented a trap-driven TLB
simulator in Mach 3.0, a microkernel operating system, on an i486-based personal computer. Moreover, to
magnify the importance of address translation, we did not use simple test programs, such as SPEC92, which
are usually used to evaluate system performance. Instead, we developed client-server style workloads that
stress the TLB by switching between several tasks frequently. This report discusses the implementation of
the TLB simulator and presents the results from these test workloads.

The organization of the remainder of this report is as follows: Section 2 outlines related work. Section 3
describes the design of the trap-driven simulator. Section 4 presents the preliminary results and analyses of
our experiments. Section 5 presents some concluding remarks and proposes of our future work.

2 Related Work

Because this work is an evaluation of hardware performance under a multi-tasking environment, previous
similar studies focusing on hardware performance under such environments deserve review. In addition,
because the experimental method used in this work is critical to the success of this kind of evaluation,
previous studies involving similar methods are also reviewed here.

2.1 Similar Multi-tasking Evaluations

Only in the last ten years have researchers begun to study hardware performance under multi-tasking
environments or comparable software structures. In these recent studies, two kinds of software structures are
commonly investigated: (1) a new-generation operating system, such as a microkernel OS and (2) a new
application, such as X window and multi-media applications. In these studies, furthermore, the evaluation of
hardware performance is primarily focused on memory system performance.

Studies of a microkernel OS, such as Mach 3.0, have consistently demonstrated that cache and TLB
misses occur more frequently with the microkernel OS than with traditional OS structures [Chen93a,
Nagle93, Nagle94]. A miss is, simply, an event which caches or TLBs do not contain the data requested by
central process unit (CPU), and therefore CPU has to spend more clock cycles to get the data from main
memory. The more misses are, the worse the cache and TLB performance is degraded because the purpose
of the cache and TLB design is to satisfy most of the CPU’s data requests to avoid expensive main memory

2/27

accesses. As an example of TLB performance studies. Nagle found that this higher frequency of misses 1s
primarily due to the division of the microkernel OS into more subsets-or. more address spaces-than are
found in traditional OS structures. As a result. the path of invoking an OS service becomes longer. which. in
turn, stresses the cache and TLB more than does the traditional OS structure.

Studies of both X window and multi-media applications showed that these multi-tasking workloads
degrade TLB performance considerably [Chen93b, Chen94}. This degradation occurs becausc these new
applications consult servers or OS services more frequently than do the traditional benchmarks. Meanwhile,
switching process contents between the applications and the servers prompts a purging of the TLB content.
to ensure the address translation valid. This purging will disallow the TLB to be fully utilized.

2.2 Similar Experimental Methods

To evaluate hardware performance under multi-tasking environments, we need tools that are capable of
monitoring system activities with minimal disturbance to the system under analysis. The most common
monitoring tools are code annotation systems such as pixie [Smith91]. These are purely software-based
because they work by inserting monitoring code directly into executable images of programs. This process
of inserting code is called “annotation.” When the annotated program is executed, the inserted code can
record program activities into a predetermined file for post-analysis.

In addition to purely software-based tools, hardware-assisted tools for monitoring system activities also
exist. For example, Nagle et al. [Nagle92] have developed a monitoring tool by combining a logic analyzer,
which is a hardware item, with an instrumented OS kernel, which is a software item. This monitoring tool
probes the system bus and records the system statistics in its own buffer. Because it directly probes the
system bus, this tool is capable of collecting system activities completely. However, once the tool’s buffer
becomes full, the system under investigation needs to be stalled so that the buffer contents can be “dumped”
to files. This dumping is necessary, on the one hand, because otherwise the system statistics cannot be
collected. On the other hand, the stall is detrimental to the experiment because it discontinues the system
execution and therefore distorts the system behavior. Unfortunately, the tool’s buffer is usually small,
compared to the amount of system statistics collected during program execution; thus, stalls occur frequently
and the system under measurement is distorted by the experiment.

The tools mentioned above, both those purely software-based and those that are hardware-assisted, have
some important shortcomings. Although it monitors applications adequately, pixie only works well in
monitoring single process activity and cannot capture events produced in an OS, because it is very hard to
annotate the operating system. Nagle’s tool requires both a large buffer in the monitoring tool and a method
of stalling the system completely and correctly. These are serious shortcomings if multi-tasking
environments are to be studied. To study the multi-tasking environment, we must be able to both monitor OS
activities and keep the system functioning undisturbed (not stalled) as much as possible. A limited sized
buffer and, therefore, the necessity of frequent system stalls inevitably changes the system behavior.

To overcome these shortcomings, Uhlig et al. [Uhlig94b] developed a trap-driven simulator, called
Tapeworm, that can capture events during operating system activity efficiently and correctly. Furthermore,
these events can be processed on-the-fly, thereby avoiding the need for buffering and stalling. Tapeworm,
moreover, is purely software-based. It does simulation by setting traps on all memory locations in the
workload's address space that correspond to the events under study. Therefore, each time any of those
memory regions being trapped is accessed, Tapeworm can be aware of it because a trap occurs. Within cach
trap, Tapeworm may set or clear traps again on the accessed memory place to control the progress of the

3/27

o Tapeworm is capable of capturing multi-tasking and OS kernel activities, we moditied
o fuemtoring tool for our work.

~ Ihix work extends previous work using Tapeworm. In the work of Uhlig et al., Tapeworm was used to
‘ ?;(udy instruction caches and software-managed TLBs in MIPS R3000-based systems. Implementing
Tapeworm on i1486-based machines, which employ hardware-managed TLBs. represents a new area of study
that will also (1) demonstrate the portability of the Tapeworm and (2) allow us to compare the performance
of Tapeworms on different underlying hardware platforms. In addition to that, as the most popular general
purpose machine, i486-based machines support more intensively interactive workloads than do MIPS
R3000-based machines. These workloads are requiring more operating system services because they do
more input/output activities, but the performance of these workloads on the 486 machines are still unknown.
An third contribution of this study, therefore, is to give initial performance evaluation for these interesting
and frequently more popular workloads.

3 Experimental Method

We tested our trap-driven, Tapeworm-based TLB simulator on a Gateway 2000 i486-based personal
computer with a Mach 3.0 operating system. Using this trap-driven TLB simulator, we can count the number
of TLB misses and hence evaluate the TLB performance and design trade-offs in TLB structures under a
multi-tasking environment.

In this section, we describe our Tapeworm-based experimental method in detail. First, we describe the
software environment of our experiments, which is composed of several user-level programs and the
underlying operating system, Mach 3.0. Because Mach 3.0 is the very program which makes the multi-
tasking environment in our experiment sophisticated, we focus on explaining its structure in the section
below. In particular, we describe its module and data structure that we used for our experiments, namely
PMAP and pv_list. Second, we discuss the hardware environment of our experiments. We focus primarily on
the memory management unit (MMU) of the 1486 microprocessor. In particular, we discuss the 1486’s two-
level page table structure and hardware-managed TLB.

After having described our software and hardware experimental environments, we explain the Tapeworm
algorithm in detail, Lastly, we mention some problems we encountered when we were implementing
Tapeworm on our i486 machine and propose some solutions.

3.1 Mach 3.0 Microkernel

Mach 3.0 represents a new generation of OS, which is called “microkernel,” as opposed to the traditional
monolithic OS, such as UNIX BSD. In this section, we first describe the structure of a microkernel OS by
using Mach 3.0 as an example. Then we describe those module and data structure in Mach 3.0 which we
used for our experiment, the PMAP module and the pv_list data structure.

3.1.1 Monolithic vs. Microkernel

In the traditional operating system design, all the OS related codes are implemented in a single address
space. This way of implementation is rather straight-forward and allows programmers to easily begin writing
the codes. However, as the OS is required to provide more and more functions and services, the OS code
grows huger and may contain several times the amount of code it initially may have had. This growth makes

4/27

the OS hard to maintain. Thus, the need for a new implementation of OS codes has become paramount to
programmers.

To solve this maintenance problem, OS programmers have tried to make the OS system more structural.
One of these attempts is the microkernel operating system. Microkernel not only provides the benefit of
lower-cost maintenance of huge operating systems, but it also provides a more powerful protection
mechanism and is more suitable for distributed computing environments. However, the related issues of
constructing OS in a microkernel is beyond the concern of this work, so we would like to refer readers to
some relevant reports rather than to give detailed discussion here. [Rashid 89]

A typical example of the microkernel is Mach 3.0 [Rashid 89]. Mach 3.0 exports and implements a small
number of “essential” abstractions that include inter-process communication (IPC), threads, and virtual
memory. Mach 3.0 moves higher-level operating system services, like the UNIX server and the MDOS
server, to separated address spaces, usually user address spaces. Under this OS structure, a user program
running under Mach 3.0 may contact the UNIX server, which is in another user address space, through the
Mach kernel's IPC facility.

3.1.2 The module for handling physical mapping—PMAP

To allow for wide use with as many different computer architectures as possible, Mach 3.0’s virtual
memory system is partitioned into machine-independent and machine-dependent layers. Most of the virtual
memory modules are implemented in the machine-independent layer so that they do not need to be modified
while being implemented on different machines. This easy portability makes the OS more marketable, as it
can easily be adapted to various hardware architectures.

In contrast, the dependent layer is machine-specific. The dependent layer of the virtual memory system is
contained in the PMAP module, which handles all virtual-to-physical address translations [Rashid88]. The
PMAP module creates a unique pmap data structure for each task, Every pmap data structure also has its
own unique handle number, which—if it can be detected—can be used to determine the active task address
space. The pmap data structure carries the virtual-to-physical address translation information for the
corresponding task. To manipulate the address translation information, the PMAP module provides the
interfaces pmap_create, pmap_destroy, and pmap_enter. Pmap_enter is the only interface through which the
page table entries (PTE) can be changed, and all PTE modifications can be intercepted at this interface. In
our work, Tapeworm is a separate code module hooked on to pmap_enter.

3.1.3 pv-list data structure

The PMAP module also provides another useful data structure for Tapeworm, pv_list, which records the
inverse address translations, namely, the mappings of physical-to-virtual pages. By going through pv_list,
Tapeworm can easily find all valid PTEs and then set traps on these physical pages.

3.2 Intel i486 Memory Management Unit

Intel’s 1486 microprocessor is already a very popular microprocessor used in numerous personal
computer models. The 1486’s design goal is to easily accommodate single-user, multi-processing computing
environments at compatible performance levels. For this goal, it has a built-in memory management unit
(MMU) to effectively support the virtual memory system of the OS. In this section, we cxplain the

i. In Mach 3.0, “task” is synonymous with “process.”

5127

s the WE6 priwades for virtual memory system, which is called “two-level page table.” Also. we
-an wddiiomal microprocessor component the 1486°s MMU uses to speed up this mechanism. which
¢ Gt hip, anstation-look-aside buffer (TLB).

3.2.1 Two-level page table

The 1486 provides a paging mechanism to support virtual memory multi-tasking operating systems. The
1486 uses a page table to translate virtual addresses to physical addresses. This page table is hierarchically
composed of three components: the page directory, the page tables, and the page frames. Every virtual
address requires two-level translation to get its corresponding physical address, i.e. from the page directory
to the page subdirectories and from the page tables o the page frames. Therefore, this page table is
considered two-level page table. (Figure 3.1) All memory-resident elements of this page table are the same
size, 4k bytes.

3.2.2 Hardware-managed TLB

To speed up the virtual-to-physical address translation, the i486’s MMU employs a hardware-managed
TLB to cache the address translation for the most recently accessed pages. This TLB has 32 entries that are
organized as 8 sets with 4-way set associativity. The i486’s TLB does not distinguish code and data address
translations; it does not reserve special room for kernel address space; and it does not use process identifiers
(PID) to distinguish address spaces. If a TLB miss occurs, the central process unit (CPU) will search for the
corresponding mapping entry in the page table and place it directly in the TLB without informing the OS.

The OS, however, may modify a page table associated with an active process as result of either swapping
pages, writing pages, or changing page protections. If the OS modifies a page table, it has to flush the TLB to
maintain consistency between the TLB and the page table. To flush the TLB, the OS needs to reload a
process’ page directory base address into a control register in the CPU (Fig 3.1) to invalidate all TLB entries.
Because the OS may modify the page table frequently, this flushing TLB can occur many times during a
program execution in the 1486.

3.3 TheTrap-Driven TLB Simulator—Tapeworm

Since the i1486’s TLB is managed by hardware, all TLB misses are viewed as hardware events that are
transparent to software. In spite of this, some operations, such as a page fault, can help expose TLB misses
to the OS. The basic idea with Tapeworm is to force a page fault happen on each TLB miss so that all TLB
misses are visible to the OS kernel. To do this, all pages are first marked invalid except those pages whose
PTEs are held in a specific kernel-controlled data structure. We use this specific data structure to simulate the
TLB, and can vary the size, set associativity, etc., of this emulated TLB structure for different study
purposes.

The 1486’s page table entry (PTE) is a one-word item (32 bits) and is organized as shown on Fig. 3.2. The
towest bit of the PTE is the Present (P) bit, which indicates whether this PTE is valid or not. When a TLB
misy occurs, hardware automatically searches the page table for the PTE corresponding to this missing
virtual address. To recall, a miss is an event which the TLB does not hold the data requested by CPU. If the
" bt of this PTE is 1, this PTE is valid, the hardware simply stores this PTE into the TLB and resumes
tuamal execution. All of these actions are invisible to the OS. If the P bit is 0, the PTE is not valid, which
rahates the page pointed by this PTE is not residing in the physical memory and a page fault exception
=#ds 1o be generated. In a page fault exception, the OS is responsible for bringing in the faulting page from

6/27

CPU :
T 22 12 0
——>| DIRECTORY| PAGE TABLE| OFFSET| |
Virtual
Address ! PHYSICAL MEM

ADDRESS

Level-2

[}
; !)PAGE TABLE
31 0 : Level-1
[}

CONTROL REG
ol

"

7]
BASE ADDRESS 1 DIRECTORY PAGE FRAME

of the PAGE DIRBCTORY of a PROCESS

- - - —— o ——— 4

Fig. 3.1 The i486 two-level paging mechanism

31 121110 9 8 7 6 5 4 3 2 1 0
oS : PIP 1U IR p
PAGE FRAME ADDRESS 31..12 | preorprVED 0 OJDJAClW] |-
D|T |S |W
P: Present PWT: Page Write Through
R/W: Read/Write Protection PCD: Page Cache Disabie
U/S: User/System Protection A: Access D: Dirty
NOTE: The Bit 9 is used as the TapeWorm (TW) Bit

Fig. 3.2 The i486’s page table entry (PTE) format

the “backing storage,” which is usually a disk, and setting the P bit of the corresponding PTE to 1. OS may
also be required to evict a page to make room for the incoming page. In a word, the P bit serves as a
coordinating point for the hardware and the operating system in the management of the virtual memory
system. (Fig. 3.3)

7127

SO L Sy e e

SIBGENG L

Hardware TLB Physical Memory Disks

N

L1

A4

— > m
X;r:jual \\ J/ Page Fault
ress HWTLBmiss| FTBs
Trap into
J_.—._q OS & Tapeworm
< =1 l P=0 N
< 14
PTE P

Fig. 3.3 The i486’s support for virtual memory

To implement Tapeworm, however, we need two bits in the PTE for coordination because three entities
work together now, which are the hardware, OS, and Tapeworm. P bit is one of these two coordinating bits;
the other one can be obtained from one of the three OS reserved bits as shown in Figure. 3.2. We will refer to
it as the TW bit in this work.

The P bit is now used to indicate if the PTE is valid in the emulated TLB, while the TW bit is used to
indicate if the PTE is valid in OS. Table 1 is a summary of all the possible statuses of a PTE and its page. In

TW
Bit | P Bit Status Description
0 0 Invalid PTE is invalid both in Tapeworm and in the OS. its page is in the backing storage, and not
present in physical memory
0 1 Forbidden This PTE is not allowed because its page is in the emulated TLB but not present in physical
memory, which is not realistic.
1 0 08S_valid PTE is invalid in the Tapeworm, but it is valid in the OS. Its page is in physical memory, but
not present in the emulated TL.B
1 1 TW_valid PTE is valid both in Tapeworm and in the OS. its page is both in the emulated TLB and in
physical memory

Table 1: Page status in Tapeworm

8/27

Emulated TLB Physical Memory Insks
Hardware TLB (part of Physical Mem)
— - PTEs
) / 11l |
3 1 0
0 < > ok L1 /
— T 1 ——L-? o T0]
Virtual L_J Emul/aled TL Page Fault
Address H/W TLB miss miss PTEs
/ e — —
= P=0
y P=1 J .
N 14
TW=1 | TW=0
PrE | o] [P
Trap into
0OS & Tapeworm

Fig. 3.4 Tapeworm on the i486

such a scheme, when a miss occurs in the hardware TLB, i486 hardware controller will first examine the
emulated TLB for the missing PTE. If this PTE is absent in the emulated TLB, its P bit must be 0. It means
this page status must be Invalid or OS_valid. Since P is 0, this missing PTE will cause a page fault exception
into OS. Tapeworm will be invoked at this moment and check the TW bit of the missing PTE. If its TW bit is
1, it means the page status is OS_valid, and Tapeworm can bring this PTE into the emulated TLB directly
from the physical memory and do some replacement if necessary. Otherwise Tapeworm passes this faulting
event to the OS kernel for handling because it is a true page fault. (Fig. 3.4)

When implementing Tapeworm, it is necessary to keep track of the number of TW_valid PTEs in the
entire system for the emulated TLB. As mentioned in Section 3.1, we can achieve this by monitoring
pmap_enter activities. If pmap_enter validates a new PTE, Tapeworm must put this new PTE in the
emulated TLB and possibly replace some other TW_valid PTE, if this is necessary to create space.

3.4 Some Problems with Implementing Tapeworm on i486 Machines

We encountered three problems listed below when we implemented Tapeworm on an 486 machine. We
solved some of these problems, and have some suggestions for solving those remaining.

» Simulating the replacement policy
+ Invalidating kernel address pages

» Counting the total instructions executed

9/27

No
Are all four PTEs in the set valid?—— Replace non-valid PTE

Yesl

Bit0=0?
Yes No
Bitl =0 ? Bit2=07?
Yes No Yes No
Replace Replace Replace Replace
PTE #0 PTE #1 PTE#2 PTE #3

NOTE: The TLB is 4-way set associativity

Fig. 3.5 The i486’s pseudo LRU replacement policy

3.4.1 Simulating the replacement policy

By using underlying hardware, Tapeworm filters out hits in the emulated TLB and processes only the miss
events. Because of this filtering capability, Tapeworm is much faster than other approaches [Uhlig94b].
However, because Tapeworm records only the miss events, its record of workloads (tasks processed in the
TLB) is incomplete. Thus, it cannot simulate those replacement policies which depend on the full history of
references, such as the least-recently-used (LRU) algorithm. Fortunately, most modern microprocessors’
TLB designs do not depend on the LRU algorithm but on a pseudo-LRU replacement policy, which
Tapeworm can simulate. This replacement policy is simpler and much less expensive for implementation
because it does not need the full reference history. Furthermore, this pseudo-LRU policy can still perform
well because it does not throw away the most recently used entry.

The 1486 adopts the pseudo-LRU as the replacement policy for its TLB and on-chip cache. Specifically,
for each set of the TLB it uses only three bits to identify the most recently used entry and the entry to be
likely replaced out (Fig. 3.5). (in contrast to an LRU policy, which uses six bits).

To simulate this pseudo-LRU policy in Tapeworm, we chose one of the members in each set as the not-
most-recently-used (NMRU) candidate for that set. We labeled this selected member “victim.” As long as we
guaranteed the victim is a NMRU, we could replace it whenever an entry slot of the emulated TLB needs to
be reclaimed. To ensure that the victim was NMRU, we set a trap on the victim. When the victim was
referenced, we caught this reference by a fault exception, and then cleared its trap and selected another entry
from the same set as the new victim. For example, suppose the emulated TLB is N-way set associativity, one
entry of each set is set a trap on while others are not. If a fault occurs on the victim, we exchange any one of

10/27

The Emulated TLB has FIiO ptr victim
M sets with
N set associativity ith set: I c I ¢ I | cl l C l I S l

. ¢ clear tra
N-1 entries | entry s sel trap P
Supposed the missing PTE (mi) is mapped into the ith set.

If FIFO_ptr->PTE is invalid
FIFO_ptr->PTE = mi

else if mi = victim
swap FIFO_ptr->PTE with victim

else
victim = FIFO_ptr->PTE
FIFO_ptr = mi
miss ++

Fig. 3.6 Tapeworm’s strategy for NMRU replacement policy

the N-1 entries of the same set with that victim. Through this way, we can guarantee that next time when a
new PTE is claiming a slot, the victim entry is absolutely not the NMRU (Fig. 3.6).

Another way to emulate the pseudo-LRU replacement policy is as follows. Every valid PTE of the 1486
has an Access (A) bit. Whenever the CPU accesses a PTE, it will set the A bit of that PTE. Tapeworm could
periodically clear the A bits of all PTEs in the emulated TLB by using the clock interrupts. By determining
an appropriate length for the interrupt period, Tapeworm can keep sufficient history of references. Then it
can tell which entries of the emulated TLB were not referred during the last period, and, hence, can
determine which entry should be replaced out. This method, compared to the one mentioned just above, has
fewer fault exceptions because all of the emulated TLB entries are not set traps on. However, it may
introduce another overhead, periodically clearing the A bits of all the emulated TLB entries. Moreover, this
method may not be applicable for the Tapeworm-based cache simulator if the emulated cache data structure
does not provide such an Access bit.

3.4.2 Invalidating the kernel pages

When Tapeworm was implemented, furthermore, some faulting memory addresses were not restartable.
Hence some kernel pages cannot be set traps on. At each time when Tapeworm begins, all the page frames in
the physical memory should be invalidated first in order that the emulated TLB can work correctly. All page
frames in user address spaces can be invalidated without side-effects. However, some portions of the kernel
address space cannot be invalidated. This occurred in part because the i486 CPU may generate more than
one memory reference in an instruction. In some cases, the second or later memory references are not
restartable if a page fault exception occurs in previous memory references. These memory references are
mainly touching the hardware data structures residing in the kernel space such as the Task Control Blocks.

11/27

So some portions of the kernel space cannat be faulted on. This problem was not discovered when
Tapeworm was implemented on MIPS machines because these machines are RISC style, which issues only
one memory reference in each instruction.

3.4.3 Counting the total instructions executed

Tapeworm only intercepts the miss event, therefore it neither counts the total number of instructions
executed nor obtains the ratio of misses to total instructions, the “miss ratio.” For fair comparison, we only
compared the results from the same workload currently. To make an exactly quantitive comparison of TLB
performance across benchmarks or machines, we would need to collect the following statistics: the number
of total instructions of each workload, the cost of servicing a TLB miss, and the cost of servicing a page
fault. Given the number of total instructions, we could calculate the miss ratio and hence we can compare
results across benchmarks. After obtaining the cost of servicing a TLB miss, we could measure the portion
of the memory stall cycles due to the TLB performance degradation and compare the i486 TLB performance
with TLBs on other machines for these test workloads.

The important parameters mentioned above can be obtained through hardware devices, such as Monster
developed by Nagle [Nagle92] and timers with high resolution. Some microprocessors even provide on-chip
instruction counters to make it easier to count total instructions of a workload. Unfortunately, the i486 does
not provide such a counter, so an additional hardware device is necessary. Our present effort is to install
Monster on the i486 machine and collect the above mentioned statistics.

4 Experiments and Analyses

In this section, we present our preliminary experimental results to demonstrate the problematic
performance of hardware components under a multitasking environment. As mentioned previously, we focus
primarily on the i486’s TLB performance. To achieve our experiment’s goal, we built two multitasking
environments as tests. One is a DOS server running a LOTUS spread sheet and the other is mpeg_play; both
are under Mach 3.0 operating system.

4.1 Mach DOS Server (MDOS) and LOTUS

The first multitasking environment we buit is the DOS server provided by Mach 3.0 with an application
program, the LOTUS spread sheet. The DOS server of Mach 3.0, known as MDOS, is to emulate the
Microsoft DOS working environment under Mach 3.0. It is a good example for demonstrating the
microkernel OS’ capability of supporting more than one operating system service semantics at a time.
Particularly, this DOS server can co-exist with the UNIX server under Mach 3.0 without causing conflicts.
We chose LOTUS spread sheets as the test application program because it is widely used in general purpose
computers.

To present our experimental results, we first introduce the working model of the MDOS server. Then we
show the performance degradation of the i486's TLB under this environment and discuss the various reasons
of degradation. Moreover, the speed of our Tapeworm-based TLB simulation also deserves mention because
it is the major advantage of trap-driven simulation over other kinds of simulation tools.

12/27

4.1.1 The working model of the MDOS server of Mach 3.0

MDOS server is a user-level server task on top of the Mach 3.0 kernel. It supports DOS system services as
a multi-threaded' Mach task running in conjunction with the 4.3 BSD UNIX server. The MDOS server
provides a truly emulated traditional DOS environment so that those existing DOS applications can run
immediately under Mach 3.0 without modification.

To run a DOS application program, MDOS first loads the DOS bootstrap image from a DOS partition of a
second storage (disk), initializes the instruction pointer of a special thread (V86 thread) to the bootstrap
code, and then resumes the V86 thread’s execution. The i486’s instruction set architecture (ISA) provides a
feature which can interpret instructions as an 8086 chip would. This feature is called the Virtual 8086 mode.
In this mode the one megabyte address space of a DOS task can be mapped to anywhere in the 4 gigabyte
address space provided by the i486, and hence DOS can co-exist easily with other UNIX tasks. The V86
thread utilizes the Virtual 86 mode, maps DOS into the MDOS task’s address space, and then begins
interpreting DOS commands. This V86 thread is also on behalf of DOS application programs when they are
running. In other words, it will read instructions from DOS application programs literally and execute them.
This V86 may generate exceptions such as DOS system calls and system interrupts, when it is executing on
behalf of DOS programs. The Mach 3.0 exception handling mechanism can catch these exception events and
either handle them inside the kernel or pass them back to the MDOS server.

The MDOS task of Mach 3.0 consists of six threads. One of them is the V86 thread, whose function has
been mentioned above. Other threads include an MDOS thread which handles the exceptions passed back
from kernel, a pager thread which handles the page mapping from conventional DOS memory to virtual
memory, and three other threads that are responsible for generating DOS interrupts for keyboard, mouse, and
timer, respectively. The V86 and the MDOS threads are the sources for most of the execution time when a
DOS application program is running.

4.1.2 Experiment and resulits

In this work, we used as our test program a LOTUS spread sheet which calculates stressing forces by
using a finite-element method. We counted the number of TLB misses for each entire “test cycle.” A typical
“test cycle” consists of the following steps in order:

+ start the MDOS server

+ start the LOTUS program

» open the spread sheet

* vary two particular input parameters
» have LOTUS do calculation

» exit the LOTUS program

» exit the MDOS server

For each TLB structure, we ran our test cycle twice, and we averaged the two data sets because the results
may vary from run to run for two major reasons. One is that Tapeworm is intrinsically a dynamic system in
which experimental results are non-deterministic; the other is that the test cycle needs some manual inputs.

i. Mach supports a multi-thread environment in which a task can be broken into more than one thread; each thread is an independent
executing unit within the address space defined by its task.

13/27

MDOS&LOTUS

1600000

[

1400000
1200000 = -
MOUSE
1000000 = O keyboard
:
2 I pager
E 800000
k-] Bimer
* 500000 o Oves
400000 B mocs
200000 = —
0
N oo =02 « v« - @ o o . 9 c o . oW N N - o.
™ Ly N o ©0 -] - g o~ ~N -] P el "] /-1 © - - o~ o~
] © © - - Ny Y T S w ow -
T - DY v

TLB configuration (entries, associativity)

Fig. 4.1 MDOS&LOTUS: TLB misses against TLB configurations

A dynamic system means that when the test program is running, there are also some other processes, such as
the network daemon, running on the same machine. These processes will come to occupy the CPU
alternatively and in a random order. Because their behaviors are unpredictable and their execution may affect
the experimental outcomes, the results are not deterministic.

Fig. 4.1 shows the number of misses contributed by the MDOS server against twenty TLB structures for
our test cycles. We obtained these results by using a “first-in, first-out” (FIFO) replacement policy for the
simulated TLB. As shown in this figure, we can easily find that the miss numbers level off as the size of the
simulated TLB is above 64 entries. Specifically, this implies that a TLB of 64 entries can cover the “working
set™ of this workload most of time. In addition, the miss number for the TLB of 32 entries with 4-way set
associativity is much higher than that of the others. The 1486 TLB has the same structure, and hence it will

perform badly for this workload.
To further investigate the reasons of performance degradation, we studied the following perspectives:
« TLB capacily‘
« Mapping of the TLB entries for demanded pages

+ Instruction and data reference separation

i. “working set” means the range of data requested by programs at a time.

14/27

4.1.2.1 TLB Capacity

As the TLB size gets larger, the performance disparity between set associativities and full associativity is
less significant because large TLBs can cover the active process's working set and most of the remaining
misses are due to compulsory misses'. To reduce these remaining misses, one possible way is appending a
process identifier (PID) to each TLB entry to avoid flushing the TLB when context switches happen. We
examine this suggestion further in the next section. Another way is prefetching wisely. Prefetching is a good
technique to enhance the performance of the instruction caches in CPUs. However, compared to caches, the
TLB entries have larger granuality since each of them covers a range of a page size. In such a case, the
advantage of prefetching used in TLBs is questionable because within a page of 4k size the instructions
stream issued from the CPU may have great chances to change the directions due to the quota expiration or
mandatory context switches for requesting system services. We have not yet proven our thinking currently,
and we plan to do it as our next step.

4.1.2.2 Mapping of the TLB entries for demanded pages

We showed above that when the TLB size is 32 entries the number of misses for 4-way set associativity is
much higher than those for higher degrees of set associativity of the same TLB size. We thought this is due
to the poor mapping of the TLB entries for pages demanded by programs. Therefore, we made a detailed
examination on the TLB of 32 entries.

As shown in the Fig. 4.2, we proved our thinking by comparing two TLB structures: 4-way against 8-way
set associativity. We changed the mapping function of the TLB entries for pages by simply changing the
TLB's set associativity. This change reduced the TLB misses significantly.

To realize the reasons of the poor mapping, we have the following observations. From the Fig. 4.1, we
found most of the extra misses were from the v86 thread’s references. Moreover, in the Fig. 4.3 we show that
most of those extra misses were contributed by data references. We conjectured that the LOTUS spread sheet
has poor data placement in memory, since most of the extra misses were from the v86 thread which executed
instructions on behalf of LOTUS. However, this conjecture needs to be further verified.

To further support our thinking of poor mapping, we also have tried remapping the pages into the TLB by
using a TLB of 28 entries. As also shown from the middle two columns in the Fig. 4.3, we got good benefit
from remapping. Fig. 4.4 shows the profile of misses over TLB entries where both TLBs have 4-way set
associativity. We can see the mapping is better for the TLB of 28 entries, although there is still a set with
peak contention.

4.1.2.3 Instruction and data reference separation in the TLB

We also examined the effectiveness of splitting instruction and data references for TLB. In other words,
we suspected if the conflicts between instruction and data references were significant.

The leftmost column in the Fig. 4.3 represents the miss number of a TLB of 36 entries in which 4 entries
were allocated for instructions and 32 entries with 4-way set associativity were for data. Apparently, we got
little benefit from this TLB structure and splitting instruction and data references cannot help reducing
misses. The reason is shown in the Fig. 4.5. Most of the instruction pages were not mapped into the sets with
higher contention. In the Fig. 4.3 the rightmost column represents the miss number of a TLB of 32 entries in

i. “compulsory miss” is a miss due to the fist time of data request. after a context swilch

16/27

MDOSA&LOTUS: profile of misses over TLB entries

TLBs of 32 entries

200000

180000

160000

140000

120000

. 4way

[]Bway

100000

of misses

80000

60000

40000

20000

Fig. 4.2 MDOS&LOTUS: profile of miss numbers over TLB entries

which 4 entries are for instructions and other 28 entries are for data. Again, we cannot gain benefit from this
structure, compared to the unified TLB with 28 entries.

4.1.3 The slowdown

One of the interesting issues for implementing Tapeworm on a i486-based machine is to compare
Tapeworm performances on different platforms. Fig. 4.6 shows the slowdown for the MDOS & Lotus test
program running with Tapeworm. Note that

ExecutionTimewithTapeworm
NormalWorkloadExecutionTime

Slowdown =

Compared with the result in Uhlig’s work [Uhlig94b, Fig. 2], the Tapeworm on 1486 introduces almost the
same degradation to the system performance as the one on MIPS R3000, although the i486 one performs
worse while the emulated TLB is small. It performs worse because the codes have not yet been optimized.

However, the code size of the Tapeworm on i486 is smaller, compared to the Tapeworm on MIPS R3000.
One of the reasons is that the Tapeworm on MIPS R3000 needs to ensure no overlaps between contents of
the real TLB and its own emulated TLB. On the other hand, the Tapeworm on i486 can ignore it because the

21127

MDOS&LOTUS: Instr/Data misses
mterferences betwaen instruchons and data wtarferances betwesn mstructons and data
\'. differsnce = 81.421 (5.7%) ’ differance = 86.243 (9 3%)
1600000
poor mapgeng of data pages /
difference = 502 118 [35%)
1400000 ya
1200000 pomd ‘/
1000000 —fd p—
H 0 daa
E 800000 i —
f 1348k 1429k 926k 860k instr
600000 ——i L
400000 =l o
200000 W‘ ;‘///
432 dway LD splinted 32 dway onified 24 dway uaified 4.28 dwwy VD splitied
TLB of 36 cniries TLB of 32 caries TLB of 28 enwsics TLB of 32 entries
Fig. 4.3 MDOS&LOTUS: Instructions / Data misses
MDOS&LOTUS: profile of misses over TLB entries
TLBs with 4-way set associativity
200000
< H ' ™
180000 L4
160000 L
140000 n
e 120000
a M 238 entries
E 100000 =
5 D32 entries
« 80000 a
60000 =
40000 -
20000 A -
0
o~ < w @« (=]
N o N N [2]
TLB entry index

Fig. 4.4 MDOS&LOTUS profile of misses over TLB entries
TLBs with 4-way set associativity

17/27

MDOS&LOTUS: profile of misses over TLB entries

TLB of 32 entries w/ and wio instruction PTEs

200000

180000

160000

140000

120000

-

.

L’ B instr+Dsta
E 100000

5 0 oata only
= 80000

60000

40000

20000

: S VT

TLB entry index

Fig. 4.5 MDOS&LOTUS profile of misses over TLB entries
TLBs of 32 entries w/ and w/o instruction PTEs

real TLB is always a subset of the emulated TLB. Another reason is that the Tapeworm on 1486 relies on the
hardware to search for entries in its emulated TLB. In contrast, the Tapeworm on MIPS R3000 has to do
searching by software in the extended part of the emulated TLB if the emulated TLB is larger than the real

one.
4.2 Mpeg_play - A Benchmark Interacting with Servers Intensively

4.2.1 The working model of the mpeg_play in the X window system

mpeg_play is a software video decoder which decodes and displays frames from MPEG video bitstreams.
A previous study on the mpeg_play has shown that memory bandwidth is the primary limitation in
performance of this decoder instead of the computational complexity [Patel92]. In addition, mpeg_play
needs intensive supports from the operating system and X-window server. In the Mach 3.0 system, there are
three user-level tasks being involved in when mpeg_play is running; they are the mpeg_play task, the UNIX
server, and the X-window server. Therefore, mpeg_play is a good candidate to stress the TLB in this study

and can help us to understand the demands of the multi-tasking environment.

In this work, mpeg_play displayed 148 frames in each trial. Again, every value shown here is an average

of two trials and each trial was executed in the same environment.

18/27

MDOS&LOTUS

— — WAy

s § - W8 Y

—— G- W Y

- tutty

$ ¥

TLE total entries

Fig. 4.6 MDOS&LOTUS: Slowdown

4.2.2 Experiment and results

Fig. 4.7 shows the misses contributed by each involved task against various TLB structures.

The TLB employed the FIFO replacement policy. We can easily find that when the TLB size is above 128
entries the miss numbers level off. : :

Because each task here represents a distinct user address space, whenever the active task is changed the
emulated TLB will be flushed once to avoid the alias problem. The effect of context switches will hence be
eminent in this experiment. Although the TLB size needs to be as large as 128 entries to cover the largest
working set, the size of 64 entries has been large enough for the UNIX and X-window servers. In addition,
as the TLB gets larger, most of the misses contributed by the UNIX server remain and occupy more fraction
of total misses. As will be shown later, those misses are due to the coldstarts of the TLB, i.e., compulsory
misses after each context switch. In other words, it implies that the UNIX server suffers from the context
switches and UNIX server’s program locality is not exploited in the TLB. This problem arises because the
UNIX server acts as an event-driven model. It becomes an active task only when user tasks ask for a certain
UNIX service. Those services may happen frequently but each runs shortly. This situation is similar to the
common kernel behavior which is driven by interrupts from users or hardware.

42.21 Splitting instruction and data references

To reduce the misses for smaller TLBs, we tried to split the TLB according to the instruction and data
references. However, the results were not good. One of the reasons is that, similar to the MDOS server, there
is little interference between the data and instruction references. Another reason is that for mpeg_play there
are three tasks working together and therefore an optimized I/D partitioning for one task may not be suited

19/27

mpeg_play

18000000
17000000
16000000
15000000
14000000
13000000
12000000
11000000
10000000
9000000
8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

E X server

D ux server

of misses

B rpeg

0
T ® O N T Do « o ® < ® 0 © < ® o
D B o o Y ©c o .8 o oo
MM NN © O NN ® g wwnw oy - -8
o o © © - NN o] w oo -2
- N oo 0 0

TLB configuration (entries, associativity)

Fig. 4.7 Mpeg_play: TLB misses against TLB configurations

splitting instruction and data references, we increased the misses of the other two tasks and the overall miss
numbers were still high.

4222 Appending process identifiers (PIDs)

Although splitting instruction and data references for the TLB does not work well, we may reduce the
misses for mpeg_play by avoiding flushing the TLB. To not flush the TLB, we appended a PID to each TLB
entry such that there is no aliasing problem after context switches occurred. Without being flushed in context
switches, the TLB can remember useful translation information across address space boundaries. Especially,
X-window applications may invoke mandatory context switches frequently because they need immediate
system services, as shown in [Chen94]. Flushing the TLB at context switching will thwart the TLB
performance greatly for X-window applications. Fig. 4.8 compared the miss numbers for the TLBs with and
without PIDs and showed how badly the TLB performance degraded due to the coldstarts.

4.2.2.3 Isolating the UNIX server entries in TLB

Although appending PIDs to TLB entries is beneficial, it may cause large area of the TLB and also
complicate logic design, thus impacting the cycle time.

One way to get around is that, we may allocate some slots of the TLB to be dedicated for a particular
address space during the program execution. This can be done either by using the software managed TLBs
or adding some hardware supports. The software managed TLBs have been available in some modern

20/27

mpeg_play

18000000
16000000
14000000
. 12000000
5 10000000 .ﬁfkoo.pid
£
% 8000000 [tito.pid.unified
* 6000000
4000000
2000000 jm III I.II
0
T B O N < U © T O @ <t @ O ® < MmO N
- - o™ - - - @]] R
N N - < < . . O O . - W w ..~ NN -
™ M NN O O v < N N @© [To 2 Te I <) - - &N
m o™ @ © v——&lg NNCU\':(UD.; lﬂu‘);s!'
- N ['s]

TLB configuration (entries, associativity)

Fig. 4.8 Comparison for TLBs with and without PIDs appended on

microprocessors and the trade-off between its performance and cost has been studied in [Nagle93). Here, we
studied for the hardware managed TLB.

By dedicating TLB slots for the UNIX server, we can preserve the translation information for the
frequently invoked service subroutines in the TLB without being interfered by other address spaces. In this
experiment we partitioned the TLB into two parts; one for the UNIX server only and the other for mpeg_play
and the X-window server. Since there was no PIDs appended to TLB entries, when context switches occur
between mpeg_play and the X-window server, the portion of the TLB allocated for these two processes was
flushed.

In our experiments, there are three types of fully-associative TLBs examined, as shown in Table 2, and for

TYPE-1TLB appending PiDs, without flushing TLBs
TYPE-2 TLB a separated TLB for UNIX server

TYPE-3 TLB conventional unified TLBs without PIDs; flushing TLBs in
context switches

Table 2:Three types of TLBs

each type of TLBs three sizes are studied. Fig. 4.9~4.11 present our results. In each figure, the left two
columns represent TYPE-1 TLBs, the middle four columns for TYPE-2 TLBs, and the right two columns for
TYPE-3 TLBs.

21/27

As shown in Figures 4.9~4.11, TYPE-2 TLBs are worse than TYPE-1 TLBs. The reason is that with PIDs
appended on, the TYPE-1 TLB can dynamically exploit the entire TLB for the memory reference patterns.
On the other hand, although we reserved a subset of the TYPE-2 TLB for the UNIX server. we actually
restricted the TLB capacity for each task. As TYPE-2 TLBs are small, the extra capacity misses can offset
the benefit from dedicating TLB slots for the UNIX server.

As the TLB size is small, such as 64 entries shown in Fig. 4.9, TYPE-2 TLBs perform worse than TYPE-
3 TLBs. However, as the TLB becomes larger (256 entries), most of configurations of the TYPE-2 TLB can
outperform TYPE-3 TLBs. When the TLB size is small, the TLB capacity is the most concerned problem,
and further partitioning TLBs will worse the problem. When the TLB is large enough to cover the working
set, partitioning becomes useful. We can look at the figure where the TLB has 256 entries (Fig. 4.11). The
misses of UNIX server are almost neglectable as the subset of a TLB allocated has more than 128 entries.
This means the TYPE-2 TLB has remembered most of the UNIX service subroutines. Moreover, the misses
of the X server also become fewer, as opposed to its competitor, mpeg_play. This is interesting because it
suggests that performance of the X server is strongly related to that of the UNIX server.

Finally, for those applications which contact with servers intensively, OS scheduling policy may be
irrelevant to the TLB performance because the context switches may occur before quota expires [Chen94].
However, if we preserve a subset of the TLB for the server such that TLB can remember the server-related
translation information across context switches, then the scheduling policy may need to be considered.

4224 The replacement policy

In this work, we also examined different replacement policies for TLBs. We modified our replacement
policy to emulate the pseudo-LRU employed in the 1486 TLB. The pseudo-LRU policy is actually a variation
of Not Most Recently Used (NMRU) policy mentioned in the section 3. Fig. 4.12 and Fig4.13 present the
results. We found that there is little difference between these two policies, especially as the TLB gets larger.

5 Concluding Remarks and Future Work

The structure of the software system has become more modularized and multiple-threaded. In this work,
we have examined two examples: one is a multi-threaded task, and the other has three tasks involved; both
are under the operating system, Mach 3.0, a micro-kernel working environment.

We have demonstrated that to improve the TLB performance for the two examples examined, carefully
mapping pages into the TLB, appending PIDs to the TLB entries, and fixing TLB entries for frequently
invoked OS service routines can be beneficial. However, splitting the TLB into instruction and data parts has
no advantages, which is similar to the experience in designing caches that miss rates are not improved by
splitting caches to reduce conflicts between instructions and data [Hennessy90].

By improving the TLB structures we can enhance the performance of translating addresses under a multi-
tasking environment. If software managed TLBs are used, there is almost no cost for adding enhancement
since only a small amount of code needs to be added into kernel. However, for hardware managed TLBs, it is
not so flexible to make these modifications once they are implemented. Moreover, some of improvement
methods can impact on the cycle time. Therefore, it deserves more detailed examination for the
improvement methods found in this work.

In addition to the study above, we are also interested in the following future work. Some new
microprocessors adopt complicated MMU designs. For example, the Power PC 601 has three TLBs. Two of

22/27

m4dway; m entries with 4-way set associativity
PIDs appended

m fully: m entries with fully associativity
PIDs appended

m.nfully: mentries for mpeg_play and X server tasks
n entries for UNIX server only
with fully associativity
context switches may flush m entries

mdway cs: m entries with 4-way set associativity
but without PIDs appended
context switches may flush whole TLB
mfully ¢s: m entries with fully associativity
but without PIDs appended
context switches may flush whole TLB

£ of misses

10000000

9000000

8000000

7000000

6000000

5000000

4000000

3000000

2000000

1000000

Mpeg_play: Comparison for 3 types of TLBs TYPE 1: appending PIDs
TYPE 2: wirng down UNIX PTEs

TLE of 84 entries

64 4way 64 fully 56.8 48,18 44,20 40,24 32,32 64 4way 64 fully
fully fully tully fully fully s cs
{m,n} n: # of UNIX PTEs

TYPE 3: w/o PIDs, flushing entlre TLB

B UNIX server
n] X sarver

- mpeg_play task

Fig. 4.9 Comparison for TLBs of 3 types (64 entries)

23/27

Mpeg_play: Comparison for 3 types of TLBs

TLB ol 128 entries

TYPE 1 appending PiDs
TYPE 2 wining down UNIX PTEs
TYPE 3 wio PIDs, llushing entire TLB

1800000
TYPE 3
1600000 . 43
TYPE 3 % TvPE 2 j ST
1400000 By 3
000 t":, =1
:
o i
1200000 —$
. 5
- > 8 ,""ﬁ' W UNIX servar
% 1000000 o
-
£ [:!} 5 DO x server
3 800000 o . 329 L BB mpeg_piay task
600000 =
400000 =
200000 =
o o
128 128 96,32 80.48 72,56 64,64 48,80 128 128
4way fully fully fully fully fully fully 4way cs lully cs
{m.n) n: # ol UNIX PTEs
. . .
Fig. 4.10 Comparison for TLBs of 3 types (128 entries)
Mpeg_play: Comparison for 3 types of TLBs TYPE 1: appending PIDs
tries TYPE 2: winng down UNIX PTEs
LWL G EL G TYPE 3: w/o PiDa, flushing entire TLB
1600000
1400000
TYPE 3
1200000
TYPE 1 TYPE 2 I l
1000000 .
g B UNIX server
-
E 800000 O x server
K
- -mpog_play task
600000
400000 —----mr-rooeoo-uooro o
200000 4 L
0 =
256 258 lully 192,64 176,80 160,96 128,128 48,180 84,192 256 258

Awey

ully

fully fuily fully Tully fully
{(m.n} n: # ol UNIX PTEs

4wey cs jully cs

Fig. 4.11 Comparison of TLBs of 3 types (256 entries)

24/27

Mpeg_play

18000000
16000000
14000000
o 12000000
2 10000000 B tito.wo.pid
E
5 8000000 0 nmeu.wo.pia
™ 6000000
4000000
2000000
0 OO, _Oop,_pnoon,
-« © © o - ® O % < ® © o <+ ® 0 o < ® ®© oy
Na " T e"? oo~ d S8 ao~”o5
™Mo NN Ww W T v NN D O n O - v O

2
256,
512,

TLB structures (entries, associativity)

Fig. 4.12 Comparison for NMRU and FIFO, without PIDs appended on

Mpeg_play

18000000

16000000

14000000

12000000

10000000 B fito.pid.unified

[n] nmru.pid.unified

8000000

of misses

6000000

4000000

2000000

0

f

€ © ©® ™~ * © © « © % o© « © © © « © © o
a4 o T2 < « . @ s © . ¥ © © . & N o~ - b

L T Y) !Dw*fg ng mmg - - N
L] @ - - - N N - VR .
- © o
g w8 b o
- ~ w

TLB structure (entries, sssocistivity)

Fig. 4.13 Comparison for NMRU and FIFO, with PIDs appended on

25/27

them form a two-level T1.Bs and the remaining one is used to support variable-sized blocks. The
performance of this new MMU design under a mulu-tasking environment is still unknown and is worthwhile
of study.

We have examined the performance of some newer workloads, but have not yet studied database systems
which are also important in general-purpose computer systems. Database systems may show different
reference patterns because they have their own data placement policies and distinctive system structures. We
are interested in investigating this to find out its needs for hardware support.

26/27

References

[Anderson91] Anderson, T.E.. Levy, HM., Bershad, B.N., et al. The interaction of architecture and
operating system design, In Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, California, ACM, 108-119, 1991

[Chen93] Chen. B.. et al. The impact of operating system structure on memory system performance, In Proc.
14th Symposium on Operating System Principles, 1993

[Chen94] Chen. B. Memory Behavior of an X11 Window System, In Proc. of the USENIX winter Technical
Conference, 1994

[Hennessy90) Hennessy, J.. Patterson, D., Computer Architecture: A Quantitative Approach, p423~424,
Morgan Kaufmann Publishers, INC., 1990

[Intel92] Intel, Intel486 DX Microprocessor Data Book, 1992
[Malan92] Malan, G, et al. DOS as a Mach 3.0 Application

[Nagle92] Nagle, D., Uhlig, R. and Mudge, T. Monster: A Tool for Analvzing the Interaction Between
Operating Systems and Computer Architectures. The University of Michigan. CSE-TR-147-92. 1992

[Nagie93] Nagle, D., Uhlig, R., Stanley. T., Sechrest, S., Mudge, T., Brown, R., Design tradeoffs for
software-managed TLBs, In the 20th Annual International Symposium on Computer Architecture. San Diego,
California, IEEE, 27-38, 1993

[Nagle94) Nagle, D., Uhlig, R., Mudge, T., et al. Optimal Allocation of On-chip Memory for Multiple-API
Operating Systems, In The 21st International Symposium on Computer Architecture, Chicago, IL., 1994

[Ousterhout89] Ousterhout, J. Why aren't operating systems getting faster as fast as hardware. WRL
Technical Note (TN-11): 1989

[Pate192] Patel, K., Smith, B. C. and Rowe, L. A., Performance of a Software MPEG Video Decoder,
University of California, Berkeley, 1992

[Rashid88] Rashid, R., et al. Machine-Independent Virtual Memory Management for Paged Uniprocessor
and Multiprocessor Architectures, IEEE Transactions on Computers, Vol. 37, No. 8, p896-908, Aug, 1988

[Sites92] Sites, R., Alpha Architecture Reference Manual, Digital Press, 1992
[Smith91] Smith, M.D. Tracing with pixie. Stanford University, Stanford, CA. 1991

[Uhlig94a] Uhlig, R., Nagle, D., Mudge, T., Sechrest, S., Kernel-based Memory Simulation, ACM Sigmetrics
Conference on Measuring & Modeling of Computer Systems, Vol 22, May, 1994

[Uhlig94b] Uhlig, R., Nagle, D., Mudge, T., Sechrest, S. Trap-driven Simulation with Tapeworm 11

27127

In particular. we studied a hardware component that is most likely to be affected by the multi-tasking
environment: the translation look-aside buffer (TLB). The purpose of the TLB is to speed up the virtual-to-
physical address translation for the virtual memory system by storing the most recently used translation
information for a process. Because accessing information from this TLB usually takes one clock cycle, if
this buffer can capture the majority of the translation information most of the time. the performance of the
system will be greatly enhanced. However, since, as indicated above, the hardware designers configure their
TLBs according to single-process experiment, the TLBs may not be able to function well as expected in a
multi-tasking environment.

The architecture we are working on in this study is the Intel 1486 microprocessor, which has an on-chip
32-entry TLB, organized in 4-way set associative [Intel92]. The 1486 microprocessor is unique because its
TLB is managed by hardware instead of software, as is the case with previous study [Uhlig 94a}. In addition,
the Intel i486 based machine has shared a significant portion of personal computer market, where there are a
large amount of software available, including multi-tasking programs, such as Linux and Window 95.

Therefore, this work explores the performance of the i486's TLB in supporting the address translation
under a multi-tasking environment we built. To measure performance, we implemented a trap-driven TLB
simulator in Mach 3.0, a microkernel operating system, on an i486-based personal computer. Moreover, to
magnify the importance of address translation, we did not use simple test programs, such as SPEC92, which
are usually used to evaluate system performance. Instead, we developed client-server style workloads that
stress the TLB by switching between several tasks frequently. This report discusses the implementation of
the TLB simulator and presents the results from these test workloads.

The organization of the remainder of this report is as follows: Section 2 outlines related work. Section 3
describes the design of the trap-driven simulator. Section 4 presents the preliminary results and analyses of
our experiments. Section 5 presents some concluding remarks and proposes of our future work.

2 Related Work

Because this work is an evaluation of hardware performance under a multi-tasking environment, previous
similar studies focusing on hardware performance under such environments deserve review. In addition,
because the experimental method used in this work is critical to the success of this kind of evaluation,
previous studies involving similar methods are also reviewed here.

21 Similar Multi-tasking Evaluations

Only in the last ten years have researchers begun to study hardware performance under multi-tasking
environments or comparable software structures. In these recent studies, two kinds of software structures are
commonly investigated: (1) a new-generation operating system, such as a microkernel OS and (2) a new
application, such as X window and multi-media applications. In these studies, furthermore, the evaluation of
hardware performance is primarily focused on memory system performance.

Studies of a microkermel OS, such as Mach 3.0, have consistently demonstrated that cache and TLB
misses occur more frequently with the microkemnel OS than with traditional OS structures [Chen93a,
Nagle93, Nagle94]. A miss is, simply, an event which caches or TLBs do not contain the data requested by
central process unit (CPU), and therefore CPU has to spend more clock cycles to get the data from main
memory. The more misses are, the worse the cache and TLB performance is degraded because the purpose
of the cache and TLB design is to satisfy most of the CPU’s data requests to avoid expensive main memory

2/27

experiment. Because Tapeworm is capable of capturing multi-tasking and OS kernel activities, we moditied
it into the monitoring tool for our work.

This work extends previous work using Tapeworm. In the work of Uhlig et al., Tapeworm was used to
study instruction caches and software-managed TLBs in MIPS R3000-based systems. Implementing
Tapeworm on i486-based machines, which employ hardware-managed TLBs, represents a new area of study
that will also (1) demonstrate the portability of the Tapeworm and (2) allow us to compare the performance
of Tapeworms on different underlying hardware platforms. In addition to that, as the most popular general
purpose machine, i1486-based machines support more intensively interactive workloads than do MIPS
R3000-based machines. These workloads are requiring more operating system services because they do
more input/output activities, but the performance of these workloads on the 1486 machines are still unknown.
An third contribution of this study, therefore, is to give initial performance evaluation for these interesting
and frequently more popular workloads.

3 Experimental Method

We tested our trap-driven, Tapeworm-based TLB simulator on a Gateway 2000 i486-based personal
computer with a Mach 3.0 operating system. Using this trap-driven TLB simulator, we can count the number
of TLB misses and hence evaluate the TLB performance and design trade-offs in TLB structures under a

multi-tasking environment.

In this section, we describe our Tapeworm-based experimental method in detail. First, we describe the
software environment of our.experiments, which is composed of several user-level programs and the
underlying operating system, Mach 3.0. Because Mach 3.0 is the very program which makes the multi-
tasking environment in our experiment sophisticated, we focus on explaining its structure in the section
below. In particular, we describe its module and data structure that we used for our experiments, namely
PMAP and pv_list. Second, we discuss the hardware environment of our experiments. We focus primarily on
the memory management unit (MMU) of the 1486 microprocessor. In particular, we discuss the i486’s two-
level page table structure and hardware-managed TLB.

After having described our software and hardware experimental environments, we explain the Tapeworm
algorithm in detail. Lastly, we mention some problems we encountered when we were implementing
Tapeworm on our 1486 machine and propose some solutions.

3.1 Mach 3.0 Microkernel

Mach 3.0 represents a new generation of OS, which is called “microkernel,” as opposed to the traditional
monolithic OS, such as UNIX BSD. In this section, we first describe the structure of a microkernel OS by
using Mach 3.0 as an example. Then we describe those module and data structure in Mach 3.0 which we
used for our experiment, the PMAP module and the pv_lisr data structure.

3.1.1 Monolithic vs. Microkernel

In the traditional operating system design, all the OS related codes are implemented in a single address
space. This way of implementation is rather straight-forward and allows programmers to easily begin writing
the codes. However, as the OS is required to provide more and more functions and services, the OS code
grows huger and may contain several times the amount of code it initially may have had. This growth makes

4/27

mechanism the 1486 provides for virtual memory system. which is called “two-level page table.” Also. we
describe an additional microprocessor component the 1486's MMU uses to speed up this mechanism. which
is the on-chip, translation-look-aside buffer (TLB).

3.2.1 Two-level page table

The 1486 provides a paging mechanism to support virtual memory mulu-tasking operating systems. The
1486 uses a page table to translate virtual addresses to physical addresses. This page table is hierarchically
composed of three components: the page directory, the page tables, and the page frames. Every virtual
address requires two-level translation to get its corresponding physical address, i.e. from the page directory
to the page subdirectories and from the page tables to the page frames. Therefore, this page table is
considered two-level page table. (Figure 3.1) All memory-resident elements of this page table are the same
size, 4k bytes.

3.2.2 Hardware-managed TLB

To speed up the virtual-to-physical address translation, the 1486’s MMU employs a hardware-managed
TLB to cache the address translation for the most recently accessed pages. This TLB has 32 entries that are
organized as 8 sets with 4-way set associativity. The i486’s TLB does not distinguish code and data address
translations; it does not reserve special room for kernel address space; and it does not use process identifiers
(PID) to distinguish address spaces. If a TLB miss occurs, the central process unit (CPU) will search for the
corresponding mapping entry in the page table and place it directly in the TLB without informing the OS.

The OS, however, may modify a page table associated with an active process as result of either swapping
pages, writing pages, or changing page protections. If the OS modifies a page table, it has to flush the TLB to
maintain consistency between the TLB and the page table. To flush the TLB, the OS needs to reload a
process’ page directory base address into a control register in the CPU (Fig 3.1) to invalidate all TLB entries.
Because the OS may modify the page table frequently, this flushing TLB can occur many times during a
program execution in the i486.

3.3 The Trap-Driven TLB Simulator—Tapeworm

Since the i486’s TLB is managed by hardware, all TLB misses are viewed as hardware events that are
transparent to software. In spite of this, some operations, such as a page fault, can help expose TLB misses
to the OS. The basic idea with Tapeworm is to force a page fault happen on each TLB miss so that all TLB
misses are visible to the OS kernel. To do this, all pages are first marked invalid except those pages whose
PTE:s are held in a specific kernel-controlled data structure. We use this specific data structure to simulate the
TLB, and can vary the size, set associativity, etc., of this emulated TLB structure for different study
purposes.

The i486’s page table entry (PTE) is a one-word item (32 bits) and is organized as shown on Fig. 3.2. The
lowest bit of the PTE is the Present (P) bit, which indicates whether this PTE is valid or not. When a TLB
miss occurs, hardware automatically searches the page table for the PTE corresponding to this missing
virtual address. To recall, a miss is an event which the TLB does not hold the data requested by CPU. If the
P bit of this PTE is 1, this PTE is valid, the hardware simply stores this PTE into the TLB and resumes
normal execution. All of these actions are invisible to the OS. If the P bit is 0, the PTE is not valid, which
indicates the page pointed by this PTE is not residing in the physical memory and a page fault exception
needs to be generated. In a page fault exception, the OS is responsible for bringing in the faulting page from

6/27

